这款NLP神器火了!关键词提取、结果可视化,从小白进阶大神

快速优雅地处理NLP数据集

萧箫 发自 凹非寺
量子位 报道 | 公众号 QbitAI

如何快速优雅地处理你的NLP数据集?

试试这款号称「从小白到大神」的Texthero的工具包。

不仅编写快速简单,而且功能全面,预处理、表征、可视化样样精通,在Reddit上17个小时内就获得了近1.1k的热度。

连刚脱机的NLP程序猿看了都想与数据集再战几回:

下面是Texthero的使用效果。

 优雅美观的NLP数据处理效果

事实上,Texthero的优雅绝不仅仅在于友好的上手度,最关键的是,它省略了大量重复性代码编写工作。

只需要几行代码,Texthero就能帮你完成想要的数据预处理、表征、可视化等操作,极大程度上解放了你的双手。

来看看Texthero进行数据预处理、各种算法后的可视化效果。

效果展示

首先,进行文本清理,然后采用TF-IDF算法进行特征表示,并对此可视化:

PCA降维后的效果duangduang的:

 进行文本清理和TF-IDF表征后的可视化效果

这不是你想要的?

那么,除了预处理和表征外,试试加上K均值聚类算法,并进行可视化:

效果如下:

 进行预处理、表征和K均值聚类算法后的数据效果

经过K均值聚类算法处理后的结果一目了然。

不仅运行快,加载代码后,结果会生成在在同一个界面上,整体逻辑流程显得非常明了。

 使用效果

从展示效果来看,Texthero只需要编写少量代码,就能得到你想要的结果,为数据处理省去了不少时间。

事实上,只要掌握基本使用逻辑,萌新也能快速上手这款NLP数据处理神器。

使用指南

pip一下texthero后(或从GitHub上直接下载工具包,文末附代码链接),采用import导入它和pandas:

之后,加载你需要处理的文本信息数据集(这里采用了BBC sport数据库举例):

然后就可以开始使用了:

预处理

如果需要进行快速的数据预处理操作,直接使用「文本清理」就行:

当然,如果你需要对文本信息进行更细节的处理操作,例如将所有标点符号替换成空格、或者删除<>中的所有内容,Texthero也提供了非常完备的工具包,以供使用。

 光是预处理栏目就有这么多工具

再也不用编写一大堆代码,专门清理文本中的冗余数据了。

表征

同样,如果需要进行TF-IDF算法特征表示的话,同样只需要几行代码就能实现:

一键出结果:

如果需要更多的算法,这里也有meanshift、NMF等算法可以选用,每种算法基本都集成在一行代码中,你想要的这里都有。

可视化

而在可视化方向上,Texthero同样展现出了强大的能力,这里以PCA降维后的结果进行展示:

可视化效果非常清晰:

同样,可视化也可以自定义颜色、结果展示维度等,只需要一点Python的知识就能快速使用。

这么方便的NLP数据处理工具包,赶紧用起来~

传送门

代码链接:

https://github.com/jbesomi/texthero

项目链接:

https://texthero.org/

版权所有,未经授权不得以任何形式转载及使用,违者必究。