CVPR 2020商汤斩获3冠!62篇论文入选,“算法工厂”凭什么领跑行业?
“算法工厂”模式,正在进一步激发AI商业价值
鱼羊 发自 凹非寺
量子位 报道 | 公众号 QbitAI
“视觉实力秀”,CVPR 2020 正在线上举办中。
本届 CVPR 号称十年来最难的一届,共接收 6656 篇论文,中选 1470 篇,录用率仅为 22%,为十年来最低的一次。
不过,中国军团依然表现亮眼。学术界清华领衔,商汤则以 62 篇论文入选的成绩,领跑产业界。
成绩亮眼,却有些见怪不怪。毕竟,这已经不是商汤第一次在顶会上“一骑绝尘”。
此前的 ICCV 2019 上,商汤及其联合实验室就曾以入选 57 篇论文的成绩引来瞩目。
而这一次的 CVPR,在入选论文数上,商汤持续超越微软、Facebook 等科技巨头。
并且,又拿下了 CVPR 2020 ActivityNet 时空动作定位赛道、动作分类赛道,以及 CVPR 2020 NTIRE 竞赛等 3 项世界冠军。
至此,成立 6 年以来,商汤已经在各种重要赛事中,斩获了 60+ 个世界第一。
那么,问题来了,商汤凭什么?
62篇论文 + 3项世界冠军,实现多领域技术突破
先来看看,商汤的 CVPR 2020 成绩单背后,是怎样的技术进展。
三项比赛中,ActivityNet 是视频动作识别领域的重要实力检验竞赛。
该项竞赛历年由 Google、Facebook、UC Berkeley 等顶尖院校与研究机构主办,相关技术在视频分析、活体检测等多项实际应用中具有重要价值。
在 AVA-Kinetics 时空动作定位比赛中,依托自研技术对象-场景-对象推理网络(ACAR-Net)和自有的深度学习超算平台,商汤研究院和 X-Lab 及香港中文大学-商汤联合实验室团队以绝对优势夺得第一。
39.62mAP的成绩,大幅领先今年的第二名 6.71 mAP。
在动作分类竞赛中,商汤研究院和 X-Lab 及联合实验室团队依托自有的深度学习超算平台,在短时间内训练了多个具有超深网络的视频分类模型。在多模型融合阶段,商汤自研的时空交错网路(TIN)同样发挥重要作用。
由此,与 Google Cloud AI 拿下该项竞赛的并列第一。
而 NTIRE(New Trends in Image Restoration and Enhancement)作为全球最全面的 low-level 视觉大赛之一,能够直观地反映出 low-level 视觉这一热门领域中研究进展和突破。
商汤研究团队在 CVPR 2020 NTIRE 的真实图像(Real World RGB Images)光谱重建(HS Reconsturction)赛道中,凭借一种新的 4 级网络结构,在增大感受野的同时,在不同级子网中做特征提取,从而成功卫冕冠军。
论文方面,商汤今年入选的 62 篇论文,同样分布多个领域,包括:对抗式生成模型、三维点云理解与分析、训练加速与模型量化、视频理解与分析、网络结构搜索等。
例如,商汤入选 CVPR 2020 的论文《用于加速卷积神经网络训练过程INT8训练技术》,就针对如何提升深度学习训练速度的问题,提出了用于加速卷积神经网络训练过程的 INT8 训练技术,采用 8 比特数值训练模型,可以极大地提升训练速度,减少计算损耗,而且训练精度几乎无损。
所以,商汤的秘诀是什么?
答案还要从商汤自身的定位中寻找。
AI时代的“算法工厂”
据悉,目前商汤一共有约 4000 名员工,其中有 2500 多人都是算法和产品研发人员,超过总员工数的一半。
而商汤的路线,是依托这样的技术力量,以“算法工厂”的模式,完成科研到产品的转化。
什么叫“算法工厂”?
商汤科技联合创始人徐冰在公开演讲中谈到,现在,如何批量地生产针对不同物体和场景的模型,已经成为驱动 AI 增长、下一代技术演进的关键问题。
而成熟的深度学习训练平台,是能够推动大规模新模型生成的。这也就促成了“算法工厂”概念的形成。
“算法工厂”具体如何体现?
最直接的改变,当然就是降本增效。
徐冰提到,在 15 年的时候,完成一个亿分之一级别精度的行人识别模型,需要 10 个研究员,6 个月的时间。
而现在,同样的模型,1 个研究员用 3 天时间就可以达到同样的效果,而且使用的 GPU 资源只是原来的一半。
如此一来,训练出的模型数量,就能远远超过研究人员的数量。当一个人平均能带来 4-5 个,甚至几十个工业级别模型,就能够把人工智能算法作为一种集中的服务,通过框架平台直通终端客户,更快地扩展应用范围。
徐冰表示,有了算法工厂,有了更多的前端的感知能力,在商业上,可以看到的就是数字化进程的进一步加快,AI 在各个场景渗透率会迅速提高、功能数迅速增加,工业生产、城市治理、工作学习的各个方面都会受到颠覆性的影响。
简而言之,打造“算法工厂”的目的很简单——
实现 AI 大规模落地,进一步激发商业价值。
技术落地进行时
“算法工厂”带来的能量,在疫情期间也得到了体现。
疫情期间,商汤和青岛西海岸新区人民医院合作,在一周时间内,按要求研发出来了针对新冠肺炎的 CT 影像筛查系统,并部署抗疫一线,帮助医生提高诊断的准确率和效率。
这样的速度,正是基于商汤打造的 SenseCare 智慧诊疗平台。
实际上,除了影像科室,AI 医疗在心外科等临床科室,也能积极发挥辅助作用。
比如心脏支架手术前,需要进行大量数据研判。在这个过程中,AI 可以在术前识别好血管曲率、 长度、直径等核心指标,再进行支架放置手术模拟。这对于降低手术风险、提高手术效率而言很有帮助。
基于这样的背景,商汤的 SenseCare 智慧诊疗平台,提供了 AI 识别、辅助诊疗、手术规划等服务,覆盖消化内科、骨科、呼吸科、神经内科、放疗、放射科、口腔科、心血管科等众多科室。
并且,2019年,SenseCare 已经获得了两项国家药监局认证,开始商业化进程。
另一个引人瞩目的落地案例,是智慧城市。
近期,商汤在上海长宁区江苏路街道率先试点 AI+ 一网统管,开发了“智能巡屏”等功能。
它基于商汤 SenseFoundry 方舟城市级开放视觉平台,构建多场景、一站式 AI 城市治理解决方案,实现了 AI 研判处置全闭环管理,依次为自动发现、立案、智能派单、处置、自动核查、结案六大环节。
这样的 AI 闭环管理,能有效解决暴露垃圾识别、共享单车乱堆放等城市痛点问题,大大提升城市管理效能。
此外,AI 技术落地的另一个趋势,就是算法与硬件的结合。
比如大家熟悉的手机拍照。受到硬件极限的限制,亿级别像素手机的出现,实际上就是软件 + 算法 + 多镜头拍照的结合。
而商汤作为“AI工厂”输出算法,已经帮助手机厂商实现了 60 倍变焦、暗光拍摄这样广为人知的功能。
如今,AI 早已渗透到生活的方方面面,尤其是今年以来,新冠疫情下,数字化成为驱动创新、带动经济增长的新动力,而AI正是推动这一进程的重要底层技术。
在这样的背景之下,人工智能已经迈向落地为王的时代。
而 5G 技术的普及、新基建大幕的拉开,更是 AI 企业化前沿技术为实际生产力的一阵东风。
对于商汤这样的科技创业公司而言,这或许就是历史赋予的最好机遇。
且拭目以待。
— 完 —
- 科研版AI搜索来了!知乎直答接入正版论文库,一手实测在此2024-11-01
- 微软清华改进Transformer:用降噪耳机原理升级注意力,一作在线答疑2024-11-03
- o1满血版泄露!奥数题图片推理手拿把掐,奥特曼上线剧透o22024-11-03
- 全国第二!智平方荣获第十三届全国创新创业大赛初创型企业全国总决赛第二名(新一代信息技术赛道)2024-11-03